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Both two-dimensional percolation and classical string theory are shown to 
correspond to c = 0 in the 2d conformal algebra. Therefore, despite being different 
theories, they have the same underlying conformal structure. 

Two-dimensional conformal symmetry is an interesting approach to 
both field theories and statistical systems (Belavin et al., 1984; Boyanovsky 
and Naon, 1987). It has been applied successfully to Ising models (Belavin 
et al., 1984), to 1 < q < 4  Potts models (Dotsenko and Fateev, 1984), to 
strings and superstrings (Friedan et al., 1986) and to many other systems 
(Boyanovsky and Naon, 1987). Furthermore, it has related different models, 
e.g., the tricritical Ising model and supersymmetry (Qiu, 1986) and the 
superstring theory and the three-dimensional Ising model (Dotsenko, I987; 
and Orlando, 1988). In this paper I will use conformal symmetry to relate 
2d percolation theory to classical string theory. 

First I summarize the results of this approach. The 2d conformal algebra 
is given by 

c 
[ Ln, Lm] = (n - m)L,+m + ~  n(n 2 -  1)rn+m,o (1) 

where c is a c-number, called the parameter of the theory, which character- 
izes the theory being studied. There is a subset of the operators of this 
theory, called primary operators {~b,}, which under the conformal transfor- 
mation 

z-~ ~(z), ~-~ ((~) 

transform according to the formula 

4'"(z'~)~\dzz/ \d-z/ 4,.(~',() (2) 
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where a and A. are called the scale (conformal) dimensions of ~b.. They 
are related to its space-time dimension d. and spin s. by formulas 

d . = A . + A . ,  s . = A  --A (3) 

It has been shown (Belavin et aL, 1984) that all the correlation functions 
of the theory can be obtained from the primary field correlation functions. 

Each primary field together with its secondary ones form a conformal 
family [4~.] which forms a representation of the Virasoro algebra (1). If  the 
dimensions A. and h are given by the Kac formulas 

A,, m = Ao+ l(na+ + ma_)  2 

Ao = ~4(c -- 1) (4) 

or• = [(1 -- c)1/2 + (25 -- c)1/2]/(24)1/2 

where n and m are positive integers, then the representation [~b.] is degener- 
ate. Furthermore, if the parameter of the theory c satisfies the relation 

( 2 5 - c ) ' / 2 - ( 1 - c )  '/2 p 
(5) (25--C)1/2+(1--C)1/2 k 

where P and k are positive integers, then the theory is called minimal. In 
this case the theory has only a finite number of primary fields and all of 
them are degenerate. These are the interesting theories. It is conjectured 
(Boyanovsky and Naon, 1987) that these theories correspond to statistical 
systems which undergo second-order phase transitions. I f  one imposes 
unitarity, then two cases are possible (Friedan et al., 1984). The first is c > 1 
and A,,, - 0; in this case unitarity cannot restrict c or A,,, any further. The 
second is c < 1, in which case c has to be in the form 

c = l - 6 / m ( m + l ) ,  m = 2 , 3 , . . .  (6) 

and the corresponding conformal field dimensions are given by 

Apq = {[p(m + 1) - qm] 2- 1 } / 4 m ( m  + 1) (7) 

The value c--1 corresponds to the Ising model (Belavin et al., 1984), 
4 c = 3  corresponds to the three-state Potts model (Dotsenko and Fateev, 

1984), and c--26 corresponds to the quantum theory of strings (Friedan 
et al., 1986). 

I will show that both 2d percolation theory and classical string theory 
correspond to c = 0. 

In string theory it is known that (Schwarz, 1982) the central charge c 
arises due to the normal ordering of the operators a~ defined by 

X~(~,  r) = ~ a~ e ~"~ cos nor, /z = 1 , 2 , . . . ,  D (8) 
n = - - o o  
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where X~'(cr, r)  are the space-time coordinates and ~ and r are world sheet 
coordinates parametrizing the string. For classical string theory, however, 
there is no normal ordering; hence, classical string theory corresponds to 

c = 0  (9) 

This result makes classical string theory consistent in any space-time 
dimension, not necessarily d = 26. 

To determine the parameter  c for percolation theory, I use the result 
(Wu, 1982) that 2d bond percolation theory corresponds to q = 1 in the 
q-state Potts model. The conformal structure of  this model has been studied 
(Dotsenko and Fateev, 1984) and the relation between q and P / k  is 

P / k - ~ ( 2 N - 1 ) / 2 N ,  y = l / N  

: 2 cos(~-y/2) 
(10) 

Therefore I conclude that 2d percolation theory corresponds to c = 0. This 
result has been obtained (Saleur, 1987) by studying the finite-size corrections 
to the free energy. 

Therefore I conclude that both 2d percolation and classical string theory 
correspond to c = 0 ,  i.e., they have identical conformal structure. This 
confirms the importance of the conformal symmetry approach to both 
statistical systems and field theories. 

Unfortunately, the formulas (4) and (7) which eventually give the 
critical exponents of  the system do not work for c = 0. However, the method 
of the transfer matrix has been used (Saleur, 1987) to obtain the critical 
exponents for the 2d bond percolation problem. The invariance of the 
critical exponents in some percolation problems under conformal transfor- 
mations has been shown (Ahmed and Tawansi, 1988). 
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